Kelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videojika mendapatkan soal seperti ini maka hal pertama yang diperhatikan adalah ketika X menuju Infinity maka 1 per X dan saja yang menuju sehingga Sin dari 1 per X juga menuju 0 maka jawaban dari limit ini adalah limit x menuju 0 dari 3 x + Sin 1 per X = Karena limit x menuju Infinity dari sin 1 per x adalah 0 maka tinggal dimasukkan Infinity kedalam 3x suku yang 3 x maka akan diperoleh hasil Infinity sehingga nilai dari limit x menuju Infinity dari 3 x + Sin 1 x adalah pilihan yaitu Infinity sampai jumpa di pertemuan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
RumusCepat Dalam Mengerjakan Limit Tak Hingga. By Ahmad Ghani Posted on May 29, 2022. Di dalam pembahasan limit, seringkali kita mencari nilai limit saat x menuju tak hingga atau x menuju. Yang dimaksud dengan bilangan tak hingga adalah bilangan yang sangat besar tanpa harus anda sebutkan berapa bilangan tersebut.
Blog Koma - Pada artikel ini kita akan membahas materi Limit Tak Hingga Fungsi Trigonometri. Materi Limit Tak Hingga Fungsi Trigonometri merupakan gabungan bentuk limit tak hingga dan limit fungsi trigonometri. Jika kita perdalam lagi, ternyata bentuk "Limit Tak Hingga Fungsi Trigonometri" lebih menekankan pada limit fungsi trigonometrinya, sehingga teman-teman harus benar-benar menguasai materi limit fungsi trigonometrinya terlebih dahulu. Bentuk tak hingga $\infty$ jika sebagai sudut suatu fungsi trigonometri maka tidak bisa kita tentukan nilainya, misalkan $ \sin \infty, \cos \infty, \tan \infty $ tidak bisa kita tentukan nilainya karena nilai $ \sin x $ berkisar $ -1 \leq \sin x \leq 1 $, begitu juga nilai $ \cos x $ berkisar $ -1 \leq \cos x \leq 1 $ , dan untuk $ \tan x $ berkisar $ -\infty \leq \tan x \leq \infty $, tentu dengan $ x $ yang sudah pasti. Nah untuk memudahkan, maka bentuk yang diguankan adalah $ \frac{1}{\infty} = 0 $ sehingga nilai fungsi trigonometrinya bisa kita hitung yaitu $ \sin \frac{1}{\infty} = 0 , \cos \frac{1}{\infty} = 1, \tan \frac{1}{\infty} = 0 $ . Dan bentuk ini cocok dengan limit fungsi trigonometri yang akan kita bahas dalam artikel Limit Tak Hingga Fungsi Trigonometri. Limit Tak Hingga Fungsi Trigonometri ini ternyata soalnya dikeluarkan pada SBMPTN 2017 matematika IPA atau matematika saintek satu soal disetiap kodenya. Nah, berlatar belakang dari inilah saya membahas artikel ini secara lebih khusus agar bisa membantu teman-teman yang ingin mempelajarinya atau siapa tahu tahun-tahun berikutnya akan keluar lagi di soal seleksi masuk PTN lainnya. Dalam pembahasan Limit Tak Hingga Fungsi Trigonometri, kita harus menguasai sifat-sifat limit fungsi trigonometri, rumus-rumus dasar trigonometri, dan limit tak hingga bentuk aljabar. Sifat-sifat limit fungsi Trigonometri $\clubsuit $ Sifat-sifat limit fungsi trigonometri i. $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\sin bx} = \frac{a}{b} $ ii. $ \displaystyle \lim_{x \to 0 } \frac{\tan ax }{bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ ax }{\tan bx} = \frac{a}{b} $ iii. $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\sin bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\tan bx} = \frac{a}{b} $ iv. $ \displaystyle \lim_{x \to 0 } \frac{\sin ax }{\tan bx} = \frac{a}{b} \, \, $ atau $ \, \, \displaystyle \lim_{x \to 0 } \frac{ \tan ax }{\sin bx} = \frac{a}{b} $ Rumus-rumus dasar Trigonometri $\spadesuit $ Beberapa rumus yang digunakan dalam limit fungsi trigonometri i. $ 1 - \cos px = 2\sin \frac{1}{2} px . \sin \frac{1}{2} px $ ii. $ \cos A - \cos B = -2\sin \frac{1}{2}A+B .\sin \frac{1}{2}A-B $ iii. Identitas trigonometri $ \sin ^2 x + \cos ^2 x = 1 \rightarrow 1 - \cos ^2 x = \sin ^2 x $ Limit tak hingga fungsi aljabar $\clubsuit $ Limit tak hingga pecahan Misalkan fungsinya $ fx = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ gx = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya $ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n m \end{array} \right. $ Catatan Ambil koefisien pangkat tertingginya. Contoh Soal Limit Tak Hingga Fungsi Trigonometri 1. Tentukan hasil limit berikut ini a. $ \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} $ b. $ \displaystyle \lim_{y \to \infty } \, \frac{1}{y} \cot \frac{1}{y} $ c. $ \displaystyle \lim_{x \to \infty } \, \frac{ \csc \frac{1}{x} }{x} $ Penyelesaian a. Misalkan $ \frac{1}{x} = y $ , sehingga $ x = \frac{1}{y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} & = \displaystyle \lim_{y \to 0 } \, \frac{1}{y} \tan y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{ \tan y }{y} \\ & = 1 \end{align} $ b. Misalkan $ \frac{1}{y} = x $ , dan $ \cot x = \frac{1}{\tan x} $ . Untuk $ y $ mendekati $ \infty $ maka $ x $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{y \to \infty } \, \frac{1}{y} \cot \frac{1}{y} & = \displaystyle \lim_{x \to 0 } \, x \cot x \\ & = \displaystyle \lim_{x \to 0 } \, x . \frac{1}{\tan x} \\ & = \displaystyle \lim_{x \to 0 } \, \frac{x}{\tan x} \\ & = 1 \end{align} $ c. Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{ \csc \frac{1}{x} }{x} & = \displaystyle \lim_{x \to \infty } \, \frac{1}{x} . \csc \frac{1}{x} \\ & = \displaystyle \lim_{y \to 0 } \, y . \csc y \\ & = \displaystyle \lim_{y \to 0 } \, y . \frac{1}{\sin y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{y}{\sin y} \\ & = 1 \end{align} $ 2. Tentukan hasil limit tak kingga fungsi trigonometri berikut ini a. $ \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} $ b. $ \displaystyle \lim_{x \to \infty } \, \cot 3x^{-1} . \sin x^{-1} $ b. $ \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} $ Penyelesaian a. Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \csc 2y \\ & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \frac{1}{\sin 2y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\tan 5y}{\sin 2y} \\ & = \frac{5}{2} \end{align} $ b. Misalkan $ \frac{1}{x} = y $ , dan $ \cot y = \frac{1}{\tan y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \cot 3x^{-1} . \sin x^{-1} & = \displaystyle \lim_{x \to \infty } \, \cot \frac{3}{x} . \sin \frac{1}{x} \\ & = \displaystyle \lim_{y \to 0 } \, \cot 3y . \sin y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{1}{\tan 3y} . \sin y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin y}{\tan 3y} \\ & = \frac{1}{3} \end{align} $ c. Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{\cot \frac{1}{2}y}{\csc 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\frac{1}{\tan \frac{1}{2}y}}{\frac{1}{\sin 3y}} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin 3y}{\tan \frac{1}{2}y} \\ & = \frac{3}{ \frac{1}{2} } = 6 \end{align} $ 3. Tentukan hasil limit tak kingga fungsi trigonometri $ \displaystyle \lim_{y \to \infty } \, \sqrt{6y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} $? Penyelesaian *. Misalkan $ \frac{1}{\sqrt{y}} = x $ , sehingga $ \sqrt{y} = \frac{1}{x} $ . Untuk $ y $ mendekati $ \infty $ maka $ x $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{y \to \infty } \, \sqrt{6y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} & = \displaystyle \lim_{y \to \infty } \, \sqrt{6}.\sqrt{y}\cos \frac{3}{\sqrt{y}} \sin \frac{5}{\sqrt{y}} \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6}.\frac{1}{x} \cos 3x \sin 5x \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6}. \cos 3x . \frac{\sin 5x}{x} \\ & = \displaystyle \lim_{x \to 0 } \, \sqrt{6} \cos 3x . \displaystyle \lim_{x \to 0 } \frac{\sin 5x}{x} \\ & = \sqrt{6} . \cos 0 . 5 \\ & = \sqrt{6}. 1 . 5 = 5\sqrt{6} \end{align} $ 4. $ \displaystyle \lim_{x \to \infty } \, \frac{1 - \cos \frac{4}{x}}{ \frac{1}{x} . \tan \frac{3}{x}} = .... ? $ Penyelesaian *. Misalkan $ \frac{1}{x} = y $. Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. Bentuk $ 1 - \cos 4y = 2\sin 2y. \sin 2y $ *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{1 - \cos \frac{4}{x}}{ \frac{1}{x} . \tan \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{1 - \cos 4y}{ y . \tan 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{2\sin 2y. \sin 2y}{ y . \tan 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{2\sin 2y}{ y } . \displaystyle \lim_{y \to 0 } \, \frac{ \sin 2y}{\tan 3y} \\ & = .\frac{2}{3} = \frac{8}{3} \end{align} $ 5. Tentukan hasil limit $ \displaystyle \lim_{x \to \infty } \, \frac{2x \cot \frac{2}{x} - 3 \cot \frac{2}{x}}{5x^2 - 2x} $ Penyelesaian *. Misalkan $ \frac{1}{x} = y $ dan $ \cot y = \frac{1}{\tan y} $ Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{2x \cot \frac{2}{x} - 3 \cot \frac{2}{x}}{5x^2 - 2x} & = \displaystyle \lim_{x \to \infty } \, \frac{2x - 3 \cot \frac{2}{x}}{x5x - 2} \\ & = \displaystyle \lim_{x \to \infty } \, \frac{2x - 3 }{5x - 2} . \frac{1}{x} . \cot \frac{2}{x} \\ & = \displaystyle \lim_{x \to \infty } \, \frac{2x - 3 }{5x - 2} . \displaystyle \lim_{x \to \infty } \, \frac{1}{x} . \cot \frac{2}{x} \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, y . \cot 2y \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, y . \frac{1}{\tan 2y} \\ & = \frac{2}{5}. \displaystyle \lim_{y \to 0 } \, \frac{y}{\tan 2y} \\ & = \frac{2}{5}. \frac{1}{2} = \frac{1}{5} \end{align} $ 6. $ \displaystyle \lim_{x \to \infty } \frac{\cos \frac{4}{x}+ \cos \frac{2}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{4}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{2}{x}}{\sin ^2 \frac{1}{x} - \cos \frac{2}{x} + 1}= ...?$ Penyelesaian *. Misalkan $ \frac{1}{x} = y $, maka $ \frac{1}{\sqrt{x}} = \sqrt{y} $ Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Mengubah bentuk soalnya $ \begin{align} & \displaystyle \lim_{x \to \infty } \frac{\cos \frac{4}{x}+ \cos \frac{2}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{4}{x}.\sin \frac{3}{\sqrt{x}} - \cos \frac{2}{x}}{\sin ^2 \frac{1}{x} - \cos \frac{2}{x} + 1} \\ & = \displaystyle \lim_{y \to 0 } \frac{\cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y}{\sin ^2 y - \cos 2y + 1} \end{align} $ *. Mengubah bentuk pembilang dan penyebutnya -. Pembilangnya, Rumus $ \cos A - \cos B = -2 \sin \frac{1}{2}A+B.\sin \frac{1}{2}A-B $ $ \begin{align} & \cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y \\ & = \cos 4y - \cos 4y. \sin 3\sqrt{y} - \cos 2y + \cos 2y . \sin 3\sqrt{y} \\ & = \cos 4y 1 - \sin 3\sqrt{y} - \cos 2y 1 - \sin 3\sqrt{y} \\ & = \cos 4y - \cos 2y 1 - \sin 3\sqrt{y} \\ & = -2 \sin \frac{1}{2}4y+2y. \sin \frac{1}{2}4y-2y 1 - \sin 3\sqrt{y} \\ & = -2 \sin 3y. \sin y. 1 - \sin 3\sqrt{y} \end{align} $ -. Penyebutnya, Rumus $ 1 - \cos px = 2 \sin \frac{1}{2} px . \sin \frac{1}{2} px $ $ \begin{align} \sin ^2 y - \cos 2y + 1 & = \sin ^2 y + 1 - \cos 2y \\ & = \sin ^2 y + 2\sin y . \sin y \\ & = 3\sin y . \sin y \end{align} $ *. Menyelesaikan limitnya $ \begin{align} & \displaystyle \lim_{y \to 0 } \frac{\cos 4y+ \cos 2y.\sin 3\sqrt{y} - \cos 4y.\sin 3\sqrt{y} - \cos2y}{\sin ^2 y - \cos 2y + 1} \\ & = \displaystyle \lim_{y \to 0 } \frac{-2 \sin 3y. \sin y. 1 - \sin 3\sqrt{y} }{3\sin y . \sin y} \\ & = \displaystyle \lim_{y \to 0 } \frac{-2 \sin 3y. 1 - \sin 3\sqrt{y} }{3\sin y } \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin 3y}{\sin y} . \frac{-2}{3} 1 - \sin 3\sqrt{y} \\ & = \displaystyle \lim_{y \to 0 } \frac{\sin 3y}{\sin y} . \displaystyle \lim_{y \to 0 } \frac{-2}{3} 1 - \sin 3\sqrt{y} \\ & = 3 . \frac{-2}{3} 1 - \sin 0 \\ & = 3 . \frac{-2}{3} 1 - 0 \\ & = 3 . \frac{-2}{3}. 1 = -2 \end{align} $ Berikut kami sajikan 4 soal limit tak hingga fungsi trigonometri yang keluar pada soal SBMPTN 2017 matematika IPA dari 4 kode berbeda Nomor 11 , Soal SBMPTN 2017 Kode 165 $ \displaystyle \lim_{y \to \infty } y . \sin \frac{3}{y}. \cos \frac{5}{y} = .... $ A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 4 $ Nomor 11, Soal SBMPTN 2017 Kode 166 $ \displaystyle \lim_{x \to \infty } \frac{\sin \frac{3}{x}}{\left1 - \cos \frac{2}{x} \right.x^2.\sin \frac{1}{x}} = .... $ A. $ 0 \, $ B. $ \frac{2}{3} \, $ C. $ 1 \, $ D. $ \frac{3}{2} \, $ E. $ 3 $ Nomor 11, Soal SBMPTN 2017 Kode 167 $ \displaystyle \lim_{x \to \infty } \, x\left1 - \cos \frac{1}{\sqrt{x}} \right = .... $ A. $ 1 \, $ B. $ \frac{1}{2} \, $ C. $ \frac{1}{3} \, $ D. $ \frac{1}{4} \, $ E. $ \frac{1}{5} $ Nomor 11, Soal SBMPTN 2017 Kode 168 $ \displaystyle \lim_{x \to \infty } \, 2x \tan \frac{1}{x}. \sec \frac{2}{x} = .... $ A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 4 $ Demikian pembahasan materi Limit Tak Hingga Fungsi Trigonometri dan contohnya. Silahkan baca juga materi Limit lainnya.Secarasederhana, mencari limit x menuju tak hingga dari fungsi trigonometri yaitu kita hanya mengganti variabel dengan nilai hampiran , yaitu tak hingga. Misalnya pada fungsi trigonometri . Advertisements Nilai untuk menuju tak hingga sama dengan , karena nilai dari mendekati nol.
Kelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videountuk mengerjakan soal ini kita harus ingat jika kita memiliki limit x mendekati 0 dari X per Sin b x Maka hasilnya adalah a per B begitu pula jika kita memiliki limit x mendekati 0 dari sin AX BX hasilnya pun sama a per B pada soal ini kita diberikan limit x mendekati Tak Hingga dari 3 X dikali Sin 1 per X kita diminta untuk mencari nilainya pertama-tama kita akan melakukan pemisalan sini kita misalkan misalkan A = 1 per X Karena ini x mendekati tak hingga nggak maka disini A = 1 per x nya kita ganti dengan tak hingga karena X mendekati tak hingga sehingga A = 1 dibagi tak hinggaAdalah 0 maka dapat kita simpulkan di sini A akan mendekati nol pada soal ini menjadi limit x mendekati tak hingga karena Yang tadi kita misalkan adalah 1 per X maka kita akan memunculkan satu per x pada 3x ini 3x dapat kita ubah bentuknya menjadi 3 dibagi 1 per 3 dibagi 1 per x adalah 3 x di belakangnya tetap Sin 1 per X Nah sekarang baru kita masukkan pemisalan yang sudah kita buat tadi menjadi limit H mendekati 03 / 1 per x adalah a x 1 per x adalah a. Maka = limit H mendekati 0 dari 3 x Sin a per= 3 di sini karena angka kita tulis ulang 3 x limit mendekati 0 dari sin a per a kita akan gunakan rumus yang ini namun x-nya menjadi a. Pada soal ini hasilnya menjadi 1 per 1 maka = 3 x 1 = 3 inilah jawabannya sampai jumpa di pembahasan soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jikax menuju tak hingga, maka ditulis x β β. Jadi, nilai x akan bertambah besar dan tanpa batas. Agar semakin paham, simak rumus limit tak hingga berikut ini. F (x) = 1/ (x-3)2. G)x) = -1/ (x-3)2. Fungsi f (x) dan g (x) yang disebutkan di atas terdefinisi di selang buka yang membawa 3. Nilai f (x) itu sendiri akan membesar tanpa batas
Kelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videodi sini ada pertanyaan mengenai bentuk limit x mendekati tak hingga untuk X dikali dengan Sin 1 per X kita lihat kalau X yang kita ganti dengan tak hingga jadi nyata hingga dikali dengan Sin 1 per tak hingga abad isino karena 1 per tahunnya jadinya 04 isi 000 dikali tak hingga jadinya Nah jadi kita akan lihat dari sifatnya kalau kita punya limit x mendekati 0 untuk pembuat nol nya itu bentuk Sin X Tan X ataupun X aja kita anggap dia punya koefisien Bakti bisa Sin AX tanah ataupun AX kalau dibagi dengan pembuat nol nya juga kita anggap dengan koefisien B Bakti bisa Sin b x bisa Tan b x bisa BX ini dia pembuat alat pembuat nol sifatnya ini akan jadi koefisien-koefisien kita lihat tapi di sini kan X mendekati tak hinggacara mengubah bentuk X mendekati tak hingga untuk supaya jadinya ada bentuk 0 jadi mendekati nol itu caranya adalah kita lihat tak hingga kalau kita mau bah jadi 0 caranya adalah 1 per tak hingga itu 01/01 tak hingga Jadi kalau tangga mau jadi 0 x yang akan jadi 1 per X bentuk 1 per X daripada kita tulis 1 per X itu repot kita boleh misalkan biar tidak bingung misalkan 1 per x = u Jadi waktu kita ganti ke sini kita boleh tulis jadinya limit mendekati 0 Jadi x-nya boleh kita ganti 1 per X tak hingga nya jadi 0 kita boleh tulis 1 pack isi dari UU tapi konsisten semua harus diganti ke Uh jadi x x 1 per X itu ubati f11 Pro hari ini kita akan tulis jadinya 1 per X Sin obat ini akan kita tulis jadinya dalam bentuk limit mendekati 0 untuk Sinu kalau kita lihat Bentuknya sama dengan sifat dari limit fungsi trigonometri nya si Nopal tinggal lihat koefisiennya koefisiennya adalah satu persatu yang penting ini anu mati di sini di sini juga 1 per 1 hasilnya adalah 1 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Dengankonsep limit tak hingga ini, kita dapat mengetahui kecenderungan suatu fungsi jika nilai variabel atau peubahnya dibuat semakin besar atau bertambah besar tanpa batas atau x x menuju tak hingga, dinotasikan dengan x β β x β β. Misalkan terdapat fungsi f (x) = 1 x2 f ( x) = 1 x 2.
Ilustrasi mengerjakan soal matematika. Foto UnsplashDalam matematika, ada materi yang membahas tentang limit tak hingga. Secara sederhana, limit tak hingga adalah kajian yang tepat dalam mengetahui kecenderungan suatu fungsi apabila nilai variabelnya dibuat semakin tak hingga adalah saat kita menjumpai limit di mana nilai x mendekati tak hingga yakni lim x β β fx. Apabila dikatakan, x menuju tak hingga, ditulis x β β, artinya nilai x semakin besar atau bertambah besar tanpa buku Rahasia Memahami Limit oleh Ria Putri Yanti 2021, dijelaskan bahwa dengan konsep limit tak hingga ini, kita dapat mengetahui kecenderungan suatu fungsi jika nilai variabel atau pengubahnya dibuat semakin besar atau bertambah besar tanpa batas atau x menuju tak hingga, dinotasikan dengan xββ.Rumus Limit Tak HinggaIlustrasi mengerjakan soal matematika tentang limit tak hingga. Foto PexelsBerikut adalah rumus-rumus yang berguna untuk menghitung limit tak hingga dengan bentuk polinomial, pecahan, dan Limit Tak Hingga dengan Bentuk PolinomialRumus ini digunakan untuk menghitung nilai limit saat variabel x mendekati tak hingga dalam fungsi polinomial. Bentuk polinomial dalam variabel x pangkat tertinggi satu dikenal sebagai fungsi linier atau garis limit yang dihasilkan dari bentuk ini bergantung pada pangkat tertinggi dari polinomialnya. Limit fungsi yang memiliki variabel x, akan berpengaruh secara langsung dalam fungsi fx. Jika pangkat tertinggi pada polinomial adalah positif, misalnya fx = aβxβΏ + aβββxβΏβ»ΒΉ + ... + aβx + aβ, maka nilai limit tak hingga akan tergantung pada koefisien aβ. Berikut rumusnyaIlustrasi rumus limit tak hingga dengan hasil tak hingga positif. Foto Dok. IstimewaJika aβ > 0, maka saat x mendekati tak hingga, nilai fungsi juga akan mendekati tak hingga positif +β.Ilustrasi rumus limit tak hingga dengan hasil tak hingga negatif. Foto Dok. IstimewaJika aβ n, yakni pangkat tertinggi pembilang lebih besar dari pangkat tertinggi penyebut, maka nilai limit tak hingga dalam bentuk pecahan akan menjadi tak hingga β.Rumus Limit Tak Hingga dalam Bentuk TrigonometriRumus ini digunakan untuk menghitung nilai limit ketika variabel x mendekati tak hingga dalam fungsi trigonometri. Salah satu contoh rumus limit tak hingga dalam bentuk trigonometri yang sering digunakan, yaitulim x β Β±β sin x / x = 0Ketika x mendekati tak hingga, nilai sinus x cenderung berayun di antara -1 dan 1, sedangkan nilai x semakin besar dan menuju tak limit dari sin x / x saat x mendekati tak hingga adalah 0. Artinya, nilai limit fungsi tersebut mendekati nol ketika variabel x menuju tak Soal Materi Limit Tak HinggaIlustrasi mengerjakan soal materi limit tak hingga. Foto PexelsPenerapan limit tak hingga dalam kehidupan sehari-hari mungkin tidak terlihat langsung, limit fungsi ini merupakan pengembangan dari Limit Fungsi Fungsi Aljabar merupakan dasar dalam matematika untuk mempelajari Limit Fungsi Trigonometri, Diferensial Fungsi Turunan, hingga Integral sebuah fungsi fx = 1/x2. Apa yang terjadi dengan fungsi fx, jika nilai x semakin besar ? Untuk menjawab pertanyaan ini, mari kita amati nilai fungsi fx untuk nilai-nilai x = 1000 β fx = 0,000001Beriku contoh soal matematika mengenai limit tak hingga yang bisa dipahami1. Tentukan nilai limit fungsi aljabar tak hingga berikut iniDari penjelasan dan contoh soal di atas, bisa disimpulkan bahwa pengertian limit fungsi di tak hingga adalah sebagai berikut a. Jika nilai suatu fungsi f mendekati L untuk x yang terus membesar menuju β maka kita katakan bahwa f mempunyai limit L untuk x mendekati β dan ditulis L xf lim x = ββ dibaca limit f untuk x mendekati β sama dengan L.b. Jika nilai suatu fungsi f terus membesar untuk x menuju β maka kita katakan bahwa f mempunyai limit β untuk x mendekati β dan ditulis β= ββ lim x xf dibaca limit f untuk x mendekati β sama dengan β.c. Jika nilai suatu fungsi f terus mengecil untuk x menuju β maka kita katakan bahwa f mempunyai limit β β untuk x mendekati β dan ditulis β= ββ - lim x xf dibaca limit f untuk x mendekati β sama dengan β β .Itulah pengertian dan contoh soal limit tak hingga dalam matematika beserta penjelasannya. Semoga bermanfaat. Apa yang dimaksud dengan limit tak hingga?Apa kegunaan limit tak hingga dalam matematika?Apa rumus limit tak hingga dalam bentuk geometri?
Beberapateorema berikut sering kali digunakan untuk menyelesaikan persoalan terkait limit tak hingga. Teorema Limit Tak Hingga Keterhubungan Tak Hingga dan Nol $\displaystyle \lim_{x \to \infty} \dfrac{1}{x^n} = 0$ untuk $n \geq 1$ Ketakterhinggaan Fungsi Rasional Berbentuk Polinomial Jika $f(x)$ dan $g(x)$ adalah fungsi polinomial, maka
Kelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videountuk mengerjakan soal limit trigonometri seperti ini konsep yang harus kita ketahui adalah x mendekati 0 dari sin X = 1. Kenapa ana pada salat bentuk Sin X maka kita untuk mengerjakan soal ini bisa saja menggunakan jika kita perhatikan pada soal limit x mendekati 0 dari 2 x + Sin X X 300 Maka hasilnya adalah merupakan bentuk tak tentu maka kita harus mengerjakan soal nya dilanjut kita mulai saja ingat saya akan memecah bentuk pecahan menjadi 2 x x + kemudian ada sifat limit di mana limit dari penjumlahan sama dengan penjumlahan dari limit jadi ini bisa ditekan X mendekati infinit 2 X per X menjadi 2 + SN maksudnya X mendekati limit x mendekati infinit dari gua adalah 2 Mbak kita harus berhati-hati disini disini limit x mendekati infinit sedangkan konsep yang kita ketahui X mendekati 0. Jadi ini tidak boleh kita langsung satu hasil untuk mengerjakan ini sebenarnya kita bisa menggunakan intuisi ketika perhatikan Sin X itu nilainya min 1 Jadi panjang sisi X lebih kecil sama dengan 1 jadi seksi nilainya antara 1 sampai 1 dibagi dengan X yang di mana X mendekati suatu apa yang besar? 1 sampai 1 angka diantaranya 1 sampai 1 dibagi dengan angka yang besar maka akan mendekati no. Jadi sebenarnya bisa kita lakukan hasilnya 2. Tapi di sini saya akan membuktikan bahwa limit x mendekati infinit garis Sin X adalah 0 sekon membuktikan caranya Caranya adalah misalkan Y = 4 x maaf sama dengan seper y masukkan penis alami limit saya akan mengganti limit ini action dengan semuanya variabel yang sesuai yang sudah kita misalkan adik mendekati no Berapa yang mendekati 0 karena Y = 4 x? kalau X yang menuju tak hingga maka X menuju 0 kemudian Sin X menjadi Sin jos Partini maka punya bisa atas mobil inget yang mendekati 0 dari G * Sin bilangan berapapun Sin sepertinya disampaikan dengan ikan asin itu kan nilainya tadi dari min 1 sampai 1 dikali dengan ini menguji nama kitab sucinya apapun yang dikali dengan nol yang tadi terbukti limit x mendekati 0 dari sin X per x = 0 jadi hasilnya yang tadi tinggal 22 + 0 Apa Jepang di pertanyaan berikutnya?Sukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jikakita memiliki bilangan a dengan -1 < a < 1 maka. Misalnya . Contoh Soal 6 : Jawab : Jika pembilang maupun penyebut kita bagi dengan 5 x maka diperoleh . Beberapa artikel yang berkaitan dengan limit. antara mendekati nol dan tak hingga limit akar limit aljabar limit bentuk akar limit bilangan natural limit dengan subtitusi limit memakai
Kelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videodisini ada pertanyaan limit trigonometri dengan x menuju tak hingga maka bentuk ini akan kita Sederhanakan terlebih dahulu dimana tak hingga itu adalah 0, maka X menuju tak hingga dapat kita Tuliskan maka limit satu perihnya akan mendekati 0 untuk Sin 3 per x nya kemudian sepertinya ini kita misalkan sepertinya adalah u kalau Sepertinya kita misalkan adalah maka bentuknya menjadi Sin 3 per 1 Min Cos 2 x Sin x kuadrat ya kita pindahkan ke atas menjadi 1 per x kuadrat ini menjadi kuadrat dikali dengan Sin sehingga bentuk ini 1 Min Cos 2 u mengingatkan kita kepada bentuk 1 Min cos x adalah 2 Sin kuadrat setengah X jadi 1 min 2 menjadi 2 Sin kuadrat bentuk ini kita Tuliskan limit x menuju 0 Sin 3 x kuadrat 1 Min Cos 2 menjadi 2 Sin kuadrat X Sin Oh di dalam limit trigonometri limit x menuju 0 Sin X atau Sin X Berbek atau pakai untuk Tan ataupun unsur-unsur yang lainnya pembuat nol perbandingannya pasangannya yang kalau kita hitung nilai limit nya adalah a per b. Maka di sini kita akan buatkan pasangan unsur pembuat nol nya Tin 3U dengan 2 Sin kuadrat a kita pecah menjadi dua Sinu Sinu makan di sini kali situ ukurannya batik kali maka kita dapatkan pasangan pembuat nol nya maka tinggal kita ambil koefisien ya per 2 kali 11 per 1 kali 1 per 1 maka nilai limit nya adalah 3 per 2 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Limitberguna sebagai pernyataan suatu fungsi f (x) yang akan mendekati nilai tertentu apabila x mendekati nilai tertentu. Pendekatan dalam fungsi ini terbatas pada dua bilangan positif yang sangat kecil, dengan nama lai epsilon dan delta. Hubungan antara kedua bilangan positif ini terangkum dalam definisi limit di bawah ini: Teorema Limit Utama
ο»ΏKelas 12 SMALimit Fungsi TrigonometriLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi Trigonometri di Tak HinggaLimit Fungsi TrigonometriKALKULUSMatematikaRekomendasi video solusi lainnya0307 lim x menuju tak hingga cos 1/x-5pi/4-1/2= ... 0256Tentukan nilai dari limit fungsi dibawah ini lim x mende...0341Nilai dari lim x->tak hingga 16x^2[1-cos8/x]= ...0215Hitunglah nilai limit fungsi berikut. lim x menuju tak hi...Teks videoHalo bikin kita punya soal tentang limit fungsi trigonometri sekitarnya akan untuk nilai limit x menuju tak hingga untuk x kuadrat yang dikalikan dengan Sin X + Sin x ditambah 1 dengan 1 dikurang cosinus dari 2 per X dikali x kuadrat sebelumnya Marriot Bali sifat inert dan juga rumus limit trigonometri untuk limit x menuju 1 dari FP plus minus. Nah ini dapat kita pecah menjadi limit x menuju saya untuk SD plus minus nah limit menuju untuk diri sendiri untuk limit dari Aceh yang juga dapat kita pecah menjadi limit x menuju saya untuk sendiri dikali dengan limit x menuju untuk diri sendiri untuk limit x menuju 0 dari X per Sin B = limit x menuju 0 dari Tan X per Sin bete gimana enakan = a per b dengan b nya tidak sama dengan nol itu juga punya rumus trigonometri di mana satu yang kekurangan dari 2 T = 2 Sin kuadrat X nah disini perhatikan bahwa yang ditanyakan adalah limit x menuju tak hingga dari kita punya x kuadrat yang dikalikan dari 1 per X dikali Tan lagi dengan tangan dari 1 per X lalu ditambahkan dengan 1 nah kita bagi dengan 1 yang dikenal dengan cosinus dari 2 per 1 dikalikan dengan x kuadrat perhatikan bahwa disini kita akan pisah terlebih dahulu untuk yang ini sendiri dan untuk yang ini sendiri jadi kita Tuliskan bentuk limit x menuju tak hingga dari X kuadrat yang dikalikan dengan Sin dari 1 per X dikalikan dengan tangan dari 1 per X + B / dengan untuk 1 yang diukur dengan cosinus dari 2 dikalikan dengan x kuadrat lalu di sini barulah kita tambahkan 1 yang dibagi dengan yang sama juga berarti 1 Min Cos 2 per X dikalikan dengan x kuadrat ikan bawal di sini x kuadrat yang dapat kita peroleh atau kita eliminasi sehingga ia mendapati banyak a = limit x menuju tak hingga dari nah disini kita punya untuk Sin dari 1 per X per 3 dikalikan dengan tangan dari 1 per X pertini lalu kita bagi dengan 1 dikurang dengan cosinus dari 2 per X dengan menggunakan sifat limit yang pertama jadi dapat kita pecah untuk penjumlahan limit baru ditambah dengan bentuk limit x menuju tak hingga dari 1 yang dibagi dengan 1 dikurang dengan cosinus 2 per X barulah dikalikan dengan x kuadrat seperti ini Nah sekarang perhatikan bahwa kita menggunakan metode limit substitusi jadi kita akan memisahkan terlebih dahulu di sini kita bahwa untuk adalah 1 per X akibatnya perhatikan bahwa ketika X yang ini menuju tak hingga maka untuknya akan menuju 1 Nggak akan jadi sangat kecil menuju 0 jadi ketika X menuju tak hingga kayaknya akan menuju 0 di sini nanti dapat kita konversi bentuk limitnya. Jadi nanya kan = limit x menuju 0 dari X berarti adalah sinte lalu dikalikan dengan tangan dari X berarti tangan T1 yang diperankan cosinus 2 per X berarti menjadi cosinus 2 t lalu ditambah dengan untuk limit t menuju 0 dari nah disini kita untuk 1 yang dibagi dengan x kuadrat berarti tak lain sama saja dengan 1 per X yang dikuadratkan berarti itu adalah P kuadrat Q + 1 yang dikurangkan dari 2 per X berarti disebut tak lain adalah cosinus dari 2 t di sini. Perhatikan bahwa kita dapat lanjutkan Namun kita akan pindah alamat terlebih dahulu kita akan gunakan untuk rumus trigonometri yang ini berarti ini kan = limit x menuju 0 dari hadits ini kita punya untuk Sin t dikali dengan tangan teh kita Biarkan saja sedangkan untuk yang 1 dikurang dengan cosinus dari 2 kayaknya kita akan berubah menjadi 2 Sin kuadrat dari teks lalu sini kita tambahkan dengan begitu pun yang satunya lagi limit x menuju 0 dari teks dibagi dengan 2 Sin kuadrat dari t nanti kita perhatikan dengan Sin kuadrat b dapat berarti nanti yang tersisa adalah limit x menuju 0 dari sini kita punya untuk tangan selalu disini kita bagi dengan 2 yang dikalikan dengan Sin dari t selalu disini kita makan dengan tangan untuk limit x menuju 0 dari kita kan pecah untuk t kuadrat belanja di IP yang dikalikan dengan teh selalu disini untuk Sin kuadrat t juga dapat kita pecah menjadi sinte dikalikan dengan Sin dari teh itu sendiri berarti sekarang kelompokkan disini kita punya untuk limit x menuju 0 dari nah disini kita kelompokkan untuk yang bagian yang ini kita kelompokkan untuk setengah sendiri baru nanti untuk tangan yang dibagi dengan sinte sendiri seperti ini kita tambahkan untuk limit x menuju 0 dari untuk yang ini kita kelompokkan dimana setengahnya sendiri lalu untuk tepak sente sendiri seperti ini hal untuk Tab Arsinta lagi sendiri seperti ini nah sehingga menggunakan sifat limit yang kedua dapat kita tulis kan bawanya kan sama dengan berarti kita punya untuk limit x menuju 0 dari lalu sini kita kalikan dengan kita punya untuk limit x menuju 0 dari tangan yang dibagi dengan sinus dari t lalu nantinya kita akan tambahkan dengan untuk limit x menuju 0 dari setengah sendiri seperti ini barulah nantinya kita kalikan lagi dengan nah limit x menuju 0 dari t yang dibagi dengan Sin dari t Ini barulah kita kalikan lagi dengan limit x menuju 0 dari t yang dibagi dengan Sin dari t sendiri seperti ini Nah sekarang perhatikan bahwa kita dapat digunakan untuk rumus limit yang kita untuk menghitung nilai limitnya untuk limit x menuju 0 dari setengah ini tak lain adalah setengah jadi perlu diperhatikan bahwa limit dari suatu konstanta adalah konstanta itu sendiri. Sedangkan untuk yang ini kita dapat gunakan rumus limit yang kita punya di sini di mana untuk a dalam kasus ini adalah koefisien untuk Teddy bagian pembilang yakni 1 koefisien P di bagian tersebut sebagai baiknya juga adalah kita makanan untuk yang ini limit x menuju 0 dari setengah adalah setengah untuk limit x menuju 0 dari sin t juga adalah satu persatu karena koefisien P pada bagian pembilang dan penyebut juga sama-sama satu begitupun yang ini berarti satu persatu makanya kan sama dengan setengah ditambah dengan setengah yang sama dengan 1 jadi kita dapati ternyata nilai limitnya adalah 1. Jika Siang sih Sampai jumpa di soal nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
sjgyT.